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 VPIN (Volume synchronized Probability of Informed trading) is a leading indicator of 
liquidity-induced volatility. It is best known for having produced a signal more than hours before 
the Flash Crash of 2010. On that day, the market saw the biggest one-day point decline in the 
Dow Jones Industrial Average, which culminated to the market value of $1 trillion disappearing, 
but only to recover those losses twenty minutes later (Lauricella 2010).  
 
 The computation of VPIN requires the user to set up a handful of free parameters. The 
values of these parameters significantly affect the effectiveness of VPIN as measured by the false 
positive rate (FPR). An earlier publication reported that a brute-force search of simple parameter 
combinations yielded a number of parameter combinations with FPR of 7%. This work is a 
systematic attempt to find an optimal parameter set using an optimization package, NOMAD 
(Nonlinear Optimization by Mesh Adaptive Direct Search) by Audet, le digabel, and tribes 
(2009) and le digabel (2011). We have implemented a number of techniques to reduce the 
computation time with NOMAD. Tests show that we can reduce the FPR to only 2%. 
 

To better understand the parameter choices, we have conducted a series of sensitivity 
analysis via uncertainty quantification on the parameter spaces using UQTK (Uncertainty 
Quantification Toolkit). Results have shown dominance of 2 parameters in the computation of 
FPR. Using the outputs from NOMAD optimization and sensitivity analysis, We recommend A 
range of values for each of the free parameters that perform well on a large set of futures trading 
records. 
 

1.	  Introduction	  
 
1.1 The	  Flash	  Crash	  of	  2010	  	  
 

The May 6, 2010 Flash Crash saw the biggest one-day point decline of 998.5 points 
(roughly 9%) and the second largest point swing of 1,010.14 points in the Dow Jones Industrial 
Average. Damages were also done to futures trading, with the price of the S&P 500 decreasing 
by 5% in the span of 15 minutes, with an unusually large volume of trade was conducted. All of 
these culminated to market value of $1 trillion disappearing, but only to recover the losses within 
minutes - twenty minutes later, the market had regained most of the 600 points drop (Lauricella 
2011). Several explanations were given about the market crash. Some notable ones are:  
 

1. Phillips (2010) listed a number of reports, which pointed out that the Flash Crash is a 
result of a “fat-finger trade” in ‘Procter & Gamble,’ leading to a massive stop loss orders 
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(this theory, however, was quickly dismissed as Procter & Gamble incident came about 
after much damage had already been done to the E-mini S&P 500).  

2. Some regulators attributed to high frequency traders for exacerbating pricing. 
Researchers at Nanex argued that “quote stuffing” – placing and then immediately 
canceling large number of rapid-fire orders to buy or sell stocks – forced competitors to 
slow down their operations (Bowley 2010).  

3. The Wall Street Journal reported a large purchase of put options by the hedge fund 
‘Universa Investments,’ and suggested that this might have triggered the Flash Crash 
(Lauricella, Patterson 2010).  

4. Flood (2010) attributed technical difficulties at the NY Stock Exchange (NYSE) and 
ARCA to the evaporation of liquidity.  

5. A sale of 75,000 E-mini S&P 500 contracts by Waddell & Reed might have caused the 
futures market to collapse (Gordon, Wagner 2010).  

6. Krasting (2010) blamed currency movements, especially a movement in the U.S. Dollars 
to Japanese Yen exchange rate. 
 
After more than four months of investigation, the U.S. Securities and Exchange 

Commission (SEC) and Commodity Futures Trading Commission (CFTC) issued a full report on 
the Flash Crash, stating a large mutual fund firm's selling of an unusually large number of E-
Mini S&P 500 contracts, and high-frequency traders' aggressive selling contributed to the drastic 
price decline of that day (Goldfarb 2010).  

 

1.2	  VPIN:	  A	  Leading	  Indicator	  of	  Liquidity-‐Induced	  Volatility	  	  
 

A general concern in most of these studies is that the computerized high frequency 
trading (HFT) has contributed to the Flash Crash. It is critical for the regulators and the market 
practitioners to better understand the impact of high frequency trading, particularly, the 
volatility. Most of the existing market volatility models were developed before HFT had widely 
been used. We believe that disparities between traditional volatility modeling and high frequency 
trading framework have led to the difficulty in CFTC's ability to understand and regulate the 
financial market. These differences include new information arriving at irregular frequency, all 
models that seek to forecast volatility treating its source as exogenous, and volatility models 
being univariate as a result of exogeneity (López de Prado 2011).  

 
A recent paper by Easley, Lopez de Prado, and O'Hara (2012) applies a market 

microstructure model to study behavior of prices a few hours before the Flash Crash. The authors 
argue that new dynamics in the current market structure culminated to the breakout of the event 
and introduced a new form of probability of informed trading - volume synchronized probability 
of informed trading (VPIN) - to quantify the role of order toxicity in determining liquidity 
provisions (Easley, López de Prado, O’Hara 2011). The paper presents an analysis of liquidity on 
the hours and days before the market collapse, and highlights that even though volume was high 
and unbalanced, liquidity remained low. Order flow, however, became extremely toxic, 
eventually contributing to market makers leaving the market, causing illiquidity. 
 

Figure 1 below shows the VPIN values of E-mini futures during the day of the Flash 
Crash. Near 11:55AM on May 6th, the value of VPIN exceeded 90% threshold value, and around 
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1:08pm, it passed 95%. The VPIN value attained its maximum by 2:30pm, and the market crash 
starts to occur at 2:32 pm, which agrees with the CFTC/SEC report. This and other tests on 
different trading instruments provide anecdotal evidences that VPIN is effective. 

 
Figure 1 E-mini S&P 500’s VPIN Metric on May 6th (López de Prado 2011)  

 
 
1.3 Systemic Validation of VPIN 
 

To explore whether VPIN is effective in a generic case, one needs to define an automated 
testing mechanism and execute it over a large variety of trading instruments. To this end, Wu, 
Bethel, Gu, Leinweber, and Rüebel (2013) adopted a simple definition for VPIN events. A VPIN 
starts when the VPIN values cross over a user-defined threshold from below and last for a user-
defined fixed duration. We also call each event is a VPIN prediction, during which we expect the 
volatility to be higher than usual. If the volatility is indeed above the average of randomly 
selected time intervals of the same duration, we say that the event is a true positive; otherwise, it 
is labeled as a false positive. Alternatively, we may also say that the prediction is a true 
prediction or a false prediction. Given these definitions, we can use the false positive rate (FPR) 
to measure the effectiveness of VPIN predictions. Following the earlier work by López de Prado 
(2012), Wu, Bethel, Gu, Leinweber, and Rüebel (2013) chose to use an instantaneous volatility 
measure called Maximum Intermediate Return (MIR) to measure the volatility in their automated 
testing of effectiveness of VPIN. 

 
In order to apply VPIN predictions on a large variety of trading instruments, Wu, Bethel, 

Gu, Leinweber, and Rüebel. (2013) implemented a C++ version of the algorithm. In their test 
involving 97 most liquid futures contracts over a 67-month period, the C++ implementation 
required approximately 1.5 seconds for each futures contract, which is many orders of magnitude 
faster than an alternative. This efficient implementation of VPIN allows them to examine the 
effectiveness of VPIN on the largest collection of actual trading data reported in literature. 
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The VPIN predictions require the user to set a handful of different parameters, such as the 
aforementioned threshold on VPIN values and duration of VPIN events. The choices of these 
free parameters can affect FPR, the measured effectiveness of VPIN predictions. The authors 
computed the number of VPIN events and number of false positive events, and used FPR as the 
effectiveness score for VPIN predictions. The computation of VPIN involves a number of free 
parameters that must be provided by the users. For each of these parameter choices, the average 
FPR value over all 97 futures contracts was computed. After examining 16,000 parameter 
combinations, the authors found a collection of the parameter combinations that can reduce the 
average false positive rates from 20% to 7%. The best of these parameter combinations are 
shown in Table 2. We will provide definitions of the parameters as we describe the details of 
VPIN computation in the next section. 
 
Table 2 The 10 parameter combinations that produced the smallest average false positive rate 𝛼 

(Wu, Bethel, Gu, Leinweber, Rüebel 2013)  
𝜋 (Nominal price) 𝛽 

(Buckets 
per day) 

𝜎 
(Support 
window) 

𝜂 
(Event 

horizon) 

𝜈 (Bucket 
volume 

classification 
parameter) 

𝜏 
(Threshold 
for VPIN) 

𝛼 
(False 

Positive 
Rate) 

Median 200 1 0.1 1 0.99 0.071 
Weighted Median 1000 0.5 0.1 1 0.99 0.071 

Weighted Median 200 0.5 0.1 0.25 0.99 0.072 

Weighted Median 200 0.5 0.1 1 0.99 0.073 

Median 200 1 0.1 10 0.99 0.073 
Median 600 0.5 0.1 0.1 0.99 0.074 
Median 200 1 0.1 Normal 0.99 0.074 

Weighted Median 200 1 0.1 1 0.99 0.074 

Weighted Median 200 1 0.25 1 0.99 0.074 

Weighted Mean 200 1 0.1 1 0.99 0.075 

 
From Table 2, we see that these parameter combinations differ from each other in many 

ways, making it difficult to provide a concise recommendation on how to set these free 
parameters of VPIN. This Chapter attempts a more systematic search of the parameter space. We 
plan to accomplish this goal in two steps: parameter optimization and sensitivity analysis. First, 
we search for the optimal parameters with a popular optimization library NOMAD (Nonlinear 
Mesh Adaptive Direct Search) by Audet, Le Digabel, and Tribes (2009), and Le Digabel (2011). 
Once the parameters with the minimal FPR values are found, we carry out sensitivity analysis 
using an uncertainty quantification software package named UQTK (Uncertainty Quantification 
Toolkit) by Sargsyan, Safta, Debusschere, and Najm (2012). 
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2.	  Definition	  of	  VPIN	  
 

Based on an idealized trading model shown 
on the right, Easley, Kiefer, O’Hara, and Paperman  
(1996) defined a way to measure the information 
imbalance from the observed ratio of buys and sells 
in the market. The authors termed the measure 
probability of informed trading and used PIN as the 
shorthand. To compute PIN, one classifies each 
trade as either buy or sell following some 
classification rule (Ellis, Michaely, O’Hara, 2000), bins the trades buckets, and then calculates 
the relative difference between the buys and sells in each bucket. The probability of informed 
trading is the average buy-sell imbalance over a user selected time windows, which we will call 
the support window. This support window is typically expressed as the number of buckets. 
 

In their analysis of the Flash Crash of 2010, Easley, López de Prado, and O’Hara (2011) 
proposed grouping the trades into equal volume bins and called the new variation the volume 
synchronized probability of informed trading (VPIN). The new analysis tool essentially stretches 
out the busy periods of the market and compresses the light trading periods. The authors termed 
this new virtual timing measure the volume time. Another important parameter in computing 
VPIN is the number of buckets per trading day. 

 
An important feature in computing the probability of informed trading is that it does not 

actually work with individual trades, but rather with groups of bars, treating each as if it is a 
single trade. The trade classification is performed on the bars instead of actual trades. Both bars 
and buckets are forms of binning; the difference is that a bar is smaller than a bucket. A typical 
bucket might include tens or hundreds of bars. Based on earlier reports, we set the number of 
bars per bucket to 30 for the remainder of this work, as it has minor influence on the final value 
of the VPIN as shown from the published literature (Easley, López de Prado, O’Hara 2012; 
Abad, Yague 2012). 

 
The price assigned to a bar is called the nominal price of the bar. This is a second free 

parameter for VPIN. When the VPIN (or PIN) value is high, we expect the volatility of the 
market to be high for a certain time period. To make this concrete, we need to choose a threshold 
for the VPIN values and a size for the time window. 

 
Following the notation used by Wu, Bethel, Gu, Leinweber, and Rüebel (2013), we 

denote the free parameters needed for the computation of the VPIN as follows:  
 
• Nominal price of a bar 𝜋 
• Parameter for the Bulk Volume Classification (BVC) 𝜈 
• Buckets per day (BPD) 𝛽 
• Threshold for VPIN 𝜏 
• Support window 𝜎 
• Event horizon 𝜂 
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Next, we provide additional details about these parameters. 
 

Pricing Strategies: VPIN calculations are typically performed in time bars or volume 
bars. The most common choice of nominal price of a bar used in practice is the closing price, i.e., 
the price of the last trade in the bar. In this work, we consider the following 5 pricing options 
for our analysis: closing prices, unweighted mean, unweighted median, volume-weighted mean, 
and volume-weighted median.  

Bulk Volume Classification: A common method used to classify a trade as either buyer-
initiated or seller-initiated is via the tick rule, or more formally the Lee-Ready trade 
classification algorithm. The method assigns a trade as buy if its price is higher than the 
preceding, and as sell if otherwise. This convention depends on the sequential order of trades, 
which is not the ideal approach in high-frequency trading. Instead, the bulk volume classification 
(BVC) assigns a fraction of the volume to buys and the rest to sells based on the normalized 
sequential price change (Easley, López de Prado, O’Hara 2012). Let 𝑉!! denote the buy volume 
for bar 𝑗, and the volume of bar to be 𝑉!. We follow the definitions by Easley, López de Prado, 
and O’Hara (2012) for the computation of 𝑉!!: 

 

𝑉!! =   𝑉!   𝑍
𝛿!
𝜁  

 
where 𝑍 denotes the cumulative distribution function of either the normal or the student t-
distribution, 𝜁  the standard deviation of 𝛿! , where 𝛿! = 𝑃! − 𝑃!!! , 𝑃!  are the prices of a 
sequence of volume bars. We also denote the degrees of freedom of 𝑍 by 𝜐, and in the case of the 
standard normal distribution, we let 𝜐 = 0. The rest of the volume bar is then considered as sells 
 

𝑉!! = 𝑉! − 𝑉!! 
 
Even though the above formula uses a cumulative distribution function, it does not imply that the 
authors have assumed this distribution has anything to do with the actual distribution of the data. 
The actual empirical distribution of the data has been used, but according to Easley, López de 
Prado, and O’Hara (2012) no improvement was seen in empirical testing. We decided to use the 
BVC for its computational simplicity and, as noted by Easley, López de Prado, and O’Hara 
(2012), its accuracy, which parallels those of other commonly used classification methods. 
 

The argument of the function 𝑍 can be interpreted as a normalizer of the price changes. In 
a traditional trading model, the average price change is subtracted first before dividing by the 
standard deviation. In HFT, however, the mean price is much smaller than the standard deviation 
𝜁 (Wu, Bethel, Gu, Leinweber, Ruebel 2013). We make use of the results from earlier works by 
Easley, López de Prado, and O’Hara (2012) by always using zero as the center of the normal 
distribution and the student-t distribution. 

 
By definition, only the most recent few buckets are needed for the computation of the 

VPIN value (Easley, Kiefer, O’Hara, Paperman 1996). We call this the support window, 
represent it as a fraction of the number of buckets in a day, and denote it by 𝜎. The formula used 
to compute the VPIN is (Easley, López de Prado, O’Hara 2012)  
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𝑉𝑃𝐼𝑁 =   
𝑉!! − 𝑉!!

𝑉!
 

 
Following the works of earlier authors, we normalize the VPIN values by working with 

the following transformation: 

Φ 𝑥 =   
1
2 1+   erf

𝑥 − 𝜇
2𝜎

 

 
where erf is the error function measured by a normal distribution, 𝜇 the mean of the VPIN 
values, 𝜎 the standard deviation. 
 

VPIN Event: If the value  𝑥 is a normal distribution with mean 𝜇 and standard deviation 
𝜎, then the value Φ 𝑥  denotes the fraction of values that are less than the specific value. This is 
a useful transformation as it transforms the value of 𝑥 from an open range to a close range 
between 0 and 1. The transformation allows using a single threshold 𝜏 for a variety of different 
trading instruments convenient. For example, in earlier tests, Easley, López de Prado, and 
O’Hara (2011, 2012) typically used the value 0.9 as the threshold for Φ 𝑥 . Had the VPIN 
values followed the normal distribution, this threshold would have meant that a VPIN event is 
declared when a VPIN rises above 90% of the values. One might expect that 10% of the buckets 
will produce VPIN values above this trigger. If one divides a day’s trading into 100 buckets, one 
might expect 10 of the buckets to have VPIN values greater than the threshold, which would 
produce too many VPIN events to be useful. However, Wu, Bethel, Gu, Leinweber, and Rüebel 
(2013) reported seeing a relatively small number of VPIN events – about one event every two 
months. The reason for this observation is the following. First off, the VPIN values do not follow 
the normal distribution. The above transformation is a convenient shorthand for selecting a 
threshold, not an assumption or validation that VPIN values follow the normal distribution. 
Furthermore, we only declare a VPIN event if Φ 𝑥  reaches the threshold from below. If Φ 𝑥  
stays above the threshold, we will not declare a new VPIN event. Typically, once Φ 𝑥  reaches 
the threshold, it will stay above the threshold for a number of buckets, thus many large Φ 𝑥  
values will be included in a single VPIN event. This is another way that the VPIN values do not 
follow the normal distribution. 
 

Our expectation is that immediately after a VPIN event is triggered, the volatility of the 
market would be higher than normal. To simplify the discussion, we declare the duration of a 
VPIN event to be 𝜂 days. We call this time duration the event horizon for the remainder of the 
discussion. 
 

False Positive Rate: After we have detected a VPIN event, we next determine if the 
given event is a true positive or a false positive. As indicated before, we use MIR to measure the 
volatility. Since the MIR can be both positive and negative, two separate average MIR values are 
computed: one for the positive MIR and one for the negative MIR. These two values then 
establish a normal range. If the MIR of a VPIN event is within this normal range, then it is a 
false event; otherwise, it is a true event. We denote the false positive rate by 𝛼, where 𝛼 is  
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𝛼 =   
# of False Positive Events

#  of VPIN Events
 

 
The flowchart in Figure 3 summarizes how a VPIN event is classified. When the number 

of VPIN events triggered is 0, the above formula is ill defined. To avoid this difficulty, when no 
event is detected, we let the number of false positive events to be 0.5 and the number of events 
0.5 as well, hence FPR = 1. 
 

Figure 3 Flowchart of how a VPIN event is classified (Wu, Bethel, Gu, Leinweber, 
Rüebel 2013)  

 
 
To quantify the effectiveness of VPIN, we compute the average false positive rate over 

the 97 most active futures contracts from 2007 to 2012. For each futures contract, we compute 
the VPIN values to determine the number of VPIN events and number of false positive events. 
The average FPR reported later is the ratio between the total number of false positive events and 
the total number of events. Note that we are not taking average of FPRs of different futures 
contracts to compute the overall FPR. Assuming that each time a VPIN that crosses the threshold 
from below signals an opportunity for investments – a true event leads to a profitable investment 
and a false positive event leads to a losing investment – the FPR we use is the fraction of 
“losing” investments. Thus, the overall FPR we use is a meaningful measure of the effectiveness 
of VPIN. 
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3.	  Computational	  Cost	  	  
 

From our tests, we observe that reading the futures contracts and constructing bars are 
one of the most time-consuming steps within the algorithm. For example, an analysis on the 
computation of VPIN on 9 metal futures contracts over the 67-month period shows that reading 
the raw data took 11.93% of the total time and constructing the bars took 10.35%, while the 
remaining computation required 10.59% second. In addition, we ranked the computational cost 
of each parameter in VPIN. Results show that the construction of the bars is the most time 
consuming, followed by bucket volume classification, evaluation of VPIN, transformation of 
VPIN using the error function, and calculation of MIR value, i.e., 𝛽 > 𝜈 > 𝜎 > 𝜏 > 𝜂. 

 
To reduce the computational cost, the data is read into memory, and the computations are 

arranged so that the constructed bars are stored in memory. This allows all different 
computations to be preformed on the bars, with reading the original data again. Furthermore, we 
arrange our computations so that the intermediate results are reused as much as possible. For 
example, the same VPIN values can be reused when we change the threshold for event triggers 
and the event horizon. This knowledge is particularly useful for efficiently testing the sensitivity 
of the parameters (we need to calculate VPIN values of a large number of points to construct the 
surrogate model to be later used in sensitivity analysis). 

 
Figure 4 shows a breakdown of time needed to construct volume bars with different 

pricing options. We see that for the weighted median, it requires as much as 7 times more time 
than those of closing, mean, and weighted mean, and for median, as much as 5 times more.  

 
Figure 4 Time (seconds) needed to construct volume bars with different nominal prices 

(Wu, Bethel, Gu, Leinweber, Rüebel 2013) 
 

 
 
To better take advantage of the multiple cores in a typical CPU, we implemented 

multithreaded program to compute false positive rate for each contract independently. Our tests 
are performed on an IBM DataPlex machine at the NERSC, which imposes a maximum run time 
of single computational job of 72 hours. For almost all tests, our program terminated in less than 
72 hours. For those that did not terminate within the time limitation, we restart the test program 
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Figure 2: Time (seconds) needed to construct volume bars with different nominal prices.

a bar in order to compute the median prices [34]. This sorting procedure is very simple and requires only
a few words of working space. Let Nb denote the number of trades in a bar. On average, we expect that
each trade is to be compared log2Nb times in order to compute the median prices. In contrast, the closing
price can be obtained by simply taking the price of the last trade, and the average price can be computed
with one pass through all the trades in a bar. Overall, we expect the cost of computing the closing prices
to be less than the cost of computing the average prices and less than the cost of computing the median
prices. Furthermore, computing the weighted average or weighted median would take slightly more time
than computing their unweighted versions. Figure 2 shows the median time used to form the volume bars
with different nominal prices. These tests generated about 6,000 bars per trading day and about 9,000,000
bars for each commodity type. From these timing values, we see that computing the median prices requires
much more time than computing the closing prices or the average prices.

In constructing the volume bars, we have two free parameters to choose: how to compute the nominal
prices and the size of the volume bars. We denote the pricing strategy with ⇡ in the remaining of this paper.
In this study, we will consider five differ pricing strategies for a volume bar mentioned earlier. The size of a
bar is further discussed in the next section.

4 Bulk volume classification

The computation of VPIN, like many other techniques for analyzing market microstructures, requires us
to determine directions of trades, which is classifying each trade as either as buyer-initiated or seller-
initiated [17], or simply as a buy or a sell [29, 28]. A common method used in the market microstructure
literature is the tick rule or more formally the Lee-Ready trade classification algorithm [29, 38]. The basic
idea of the tick rule is to assign a trade as buy if its price is higher than the preceding trade, as sell if its price
is lower than the preceding trade, and the same type (buy or sell) as the preceding trade if there is no change
in price.

This classification is heavily dependent on the sequential order of trades. Typically, the order of trades
can be determined from the time stamps of the trades. However, in our data as in many other sources of data,
there are frequently many trades with the same time stamp due to high-frequency trading. Another more

6
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using the latest values of the free parameters as their new starting points. Although this approach 
does succeed in finding the optimal solution, it loses track of the computational history, and 
therefore the overall optimization process is not as efficient had we run through the whole test 
without interruption. This restart requires more computation time, but should not have affected 
the final answers we have found.  
 

4.	  Optimization	  of	  FPR	  
 
The main goal of an optimization software is solving problems of the form  
 

min
!∈!

𝑓(𝑥) 
 
where Ω  is a subset of 𝑛-dimensional space with constraints denoted by 𝑐!. The dual of this 
problem, finding the maximum, can be easily computed by multiplying the objective function by 
−1. There are many ways to numerically solve an optimization. For simple linear programming, 
the simplex method is available. For nonlinear problems, one approach is via iterative methods. 
Depending on the nature of the objective function, specifically differentiability, one can select 
from a number of existing algorithms.  
 

Popular iterative methods that make use of derivative (or by approximation through finite 
differences) include quasi-Newton, conjugate gradient, and steepest-descent methods. A major 
advantage of using the derivatives is improved rate of convergence. There are also well-known 
software packages such as L-BFGS that implement quasi-Newton methods to solve large-scale 
optimization problems (Nocedal, Liu 1989).  
 
In the computation of VPIN, the relationship between the free parameters and the final FPR 
values is defined through a lengthy computation procedure. There is no obvious ways to evaluate 
whether a small change in any of the parameters will produce small changes in FPR. For such a 
non-smooth objective function, approximation of its derivative may not lead to desirable 
answers. The computational cost of optimization algorithms designed to work without a 
derivative can also vary greatly from one problem to another. In this case, a successful search 
strategy is via Generalized Pattern Search (GPS) (Audet, Béchardand, Le Digabel 2008). We say 
a problem is a blackbox problem if either the objective function(s) or constraints do not behave 
smoothly. The MADS algorithm (Audet, Dennis 2006) is an extension of the GPS algorithm 
(Torczon 1997; Audet, Dennis 2003), which is itself an extension of the coordinate search 
(Davidon 1991). NOMAD is a C++ implementation of MADS algorithm designed for 
constrained optimization of a blackbox problem. In this chapter, we deliberately chose NOMAD 
as it not only extends the MADS algorithm to incorporate various search strategies, such as VNS 
(Variable Neighborhood Search), to identify the global minimum of the objective function(s) 
(Audet, Béchardand, Le Digabel 2008), but also targets blackbox optimization under general 
nonlinear constraints.  
 

4.1	  MADS	  (Mesh	  Adaptive	  Direct	  Search)	  Algorithm	  
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The main algorithm utilized in NOMAD is the MADS (Audet, Le Digabel, Tribes 2009; 
Le Digabel 2011), which consists of two main steps: search and poll. During the poll step, it 
evaluates the objective function 𝑓 and constraints 𝑐! at mesh points near the current value of 𝑥!. 
It generates trial mesh points in the vicinity of 𝑥!. It is more rigidly defined than the search step, 
and is the basis of the convergence analysis of the algorithm (Audet, Le Digabel, Tribes 2009). 
Constraints can be blackboxes, nonlinear inequalities, or Boolean. As for 𝑥,  it can also be integer, 
binary, or categorical (Le Digabel 2011). Readers interested in detailed explanation on how 
different constraints and 𝑥 are treated can refer to Le Digabel (2011).  
 

The MADS algorithm is an extension of the GPS algorithm for optimization problems 
which allows polling in a dense set of directions in the space of variables (Audet, Dennis 2008). 
Both algorithms iteratively search for a solution, where the blackbox functions are repeatedly 
evaluated at some trial points. If improvements are made, they are accepted, and rejected if not. 
MADS and GPS generate a mesh at each iteration, and it is expressed in the following way 
(Audet, Béchardand, Le Digabel 2008):  
 

𝑀 𝑘,∆! =    𝑥 + ∆!𝐷! ∶ 𝑧 ∈ ℕ!!   
!∈!!

 

 
where 𝑉! denotes the collection of points evaluated at the start of 𝑘th iteration, ∆!   ∈   ℝ! the 
mesh size parameter, and 𝐷 a constant matrix with rank 𝑛. 𝐷 is, in general, simply chosen to be 
an orthogonal grid of 𝐼! augmented by −𝐼!, i.e., [  𝐼!  −𝐼!]. The poll directions are not a subset of 
this matrix 𝐷, and can still have much flexibility. This is why no more complicated 𝐷 is used. 
For readers interested in a detailed discussion of the algorithm, see the paper by Audet, 
Béchardand, and Le Digabel (2008).  
 

The search step is crucial in practice for its flexibility, and has the potential to return any 
point on the underlying mesh, as long as the search does not run into an out-of-memory error. Its 
main function is narrowing down and searching for a point that can improve the current solution. 
Figure 5 shows the pseudocode of the MADS algorithm. 
 

Figure 5 MADS algorithm (Audet, Béchardand, Le Digabel 2008)  
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4.2	  NOMAD	  Optimization	  Results	  
 

Although NOMAD can solve minimization problem involving categorical variables, 
doing so will significantly reduce the efficiency of the algorithm for this particular case. A 
breakdown of time needed to construct volume bars with different pricing options shows that 
weighted median is the most computationally heavy pricing option, with closing price located at 
the opposite end of the spectrum. Each pricing strategy was considered separately to reduce the 
amount of time needed for each run of the program submitted to the computer. This arrangement 
also reduces the complexity of understanding of the parameter space and allows for obtaining a 
better solution set. Solutions obtained from different starting points are shown in Table 9. The 
optimal parameter combination from Table 9 is 

 
𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼 

Median 1528 0.1636 0.033 0.4611 0.9949 0.0340 
 

However, varying initial choices of the parameters under the same pricing strategy is shown to 
be inconsistent, which suggests that the global optimal solution might still be out of reach. We 
attempted to reach this global optimal solution by enabling the variable neighborhood search 
(VNS) strategy.  
 

4.3	  Variable	  Neighborhood	  Search	  (VNS)	  Strategy	  
 
 The VNS is a metaheuristic strategy proposed by Mladenović and Hansen (1997) for not 
only solving global optimization problems, but also combinatorial problems. It incorporates a 
descent method and a neighborhood structure to systematically search for the global minimum. 
For an initial solution 𝑥, the descent method searches through a direction of descent from 𝑥 with 
respect to the neighborhood structure 𝑁(𝑥), and proceeds to find the minimum of 𝑓(𝑥) within 
𝑁(𝑥). This process is repeated until no improvement is possible.  

302 J Glob Optim (2008) 41:299–318

Fig. 1 MADS algorithm
[0] Initializations

x0 ∈ X, ∆0 ∈ R+

k ← 0

[1] Poll and search steps
Search step

evaluate the functions on a finite number
of points of M(k, ∆k)

Poll step
compute p MADS directions Dk ∈ Rn×p

construct the frame Pk ⊆ M(k, ∆k)
with xk, Dk, and ∆k

evaluate the functions on the p points of Pk

[2] Updates
determine the type of success of iteration k
solution update (xk+1)
mesh update (∆k+1)
k ← k + 1
check the stopping conditions, goto [1]

(see [18]). A corollary of this result is that without constraints and if f is strictly differentiable,
then ∇ f (x̂) = 0.

2.2 VNS

The VNS is a metaheuristic proposed by Hansen and Mladenović [25,36], and has been
proved efficient on a large range of problems. More often than not, it is applied to combi-
natorial problems [17,24,26,27], but it is possible to use it with continuous variables as in
[4,16,20] and in the present work.

Two fundamental elements are required to define a VNS method: a descent method and a
neighborhood structure. The descent is a method executing moves with respect to the neigh-
borhood structure, which defines all the different possible trial points reachable from the
current solution. The objective of these moves is to improve the current solution, and are
repeated until no improvement is possible. The last point of the descent is a local optimum
with respect to the neighborhood structure used.

Local searches often terminate in the vicinity of a nearby local optimum. VNS uses a
random perturbation method to attempt to move away from a local optimal solution, far
enough so that a new descent from the perturbed point leads to an improved local optimum,
localized in a new and hopefully deeper valley. The perturbation method relies on the neigh-
borhood structure, and is parametrized by a non negative scalar ξk , the VNS amplitude at
iteration k, which gives the order of the perturbation (it is not necessary small, as the term
“perturbation” might suggests, and “shaking” will be used for the routine executing it). The
implementation details of the perturbation method has to be defined specifically for each type
of problems, as long as the idea of amplitude is defined and dependent of ξk . For example ξk
could be a minimal desired distance between the two points before and after the perturbation,
or the number of random elementary moves leading to the perturbed point. The most effi-
cient perturbation methods are often linked to the problem properties. In the present paper,
a generic perturbation method is described.

A description of the VNS metaheuristic is given in Fig. 2. The algorithm essentially con-
sists of two loops. Each iteration of the inner loop is decomposed into two steps: first the
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 The neighborhood structure could play a critical role in finding the global optimum. VNS 
makes use of a random perturbation method when the algorithm detects it has found a local 
optimum. This perturbed value generally differs to a large extent so as to find an improved local 
optimum and escape from the previous localized subset of Ω. The perturbation method, which is 
parameterized by a non-negative scalar 𝜉!, depends heavily on the neighborhood structure. The 
order of the perturbation, 𝜉!, denotes the VNS amplitude at 𝑘th iteration. Figure 6 succinctly 
summarizes the algorithm into two steps: the current best solution is perturbed by 𝜉!, and VNS 
performs the descent method from the perturbed point. If an improved solution is discovered, it 
replaces the current best solution, and 𝜉! is reset to the initial value. If not, a non-negative 
number 𝛿 (the VNS increment) is added to 𝜉!, and resumes the descent method. This process is 
repeated until 𝜉! reaches/exceeds a maximum amplitude 𝜉max (Audet, Le Digabel, Tribes 2009; 
Audet Béchardand, Le Digabel 2008; Mladenović, Hansen 1997).  
 

Figure 6 Pseudocode of VNS (Audet, Béchardand, Le Digabel 2008)  

 
 

4.4	  VNS	  in	  NOMAD	  
 
The VNS algorithm is incorporated in NOMAD as a search step (called the VNS search). If no 
improvement is achieved during MADS’ iteration, new trial points are created closer to the poll 
center. The VNS, however, focuses its search on a distant neighborhood with larger perturbation 
amplitude. Since the poll step remains the same, as long as the following two conditions are met, 
no further works are needed for convergence analysis (Audet, Béchardand, Le Digabel 2008).  
 

1. For each 𝑖th iteration, all the VNS trial points must be inside the mesh 𝑀 𝑖,∆! . 
2. Their numbers must be finite. 
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Fig. 2 VNS metaheuristic for
minimizing f : Rn → R [0] Initializations

itmax, ξmax, ξ0, δ ∈ N+

x0 ∈ X
k ← 0, it ← 0

[1] while (it ≤ itmax)
ξk ← ξ0

while (ξk ≤ ξmax)
x ← shaking(xk, ξk)
x ← descent(x )
if f(x ) < f(xk)

xk+1 ← x
ξk+1 ← ξ0

else
xk+1 ← xk

ξk+1 ← ξk + δ
k ← k + 1

it ← it + 1

current solution (typically a local optimum) is perturbed with an amplitude factor ξk , and then
a descent is performed from the perturbed point. If a better solution is obtained, it becomes
the new iterate, and the amplitude is reset to its initial value. Otherwise the amplitude is
increased by a value δ > 0 (called the VNS increment) so that the next perturbation will
lead to a point more distant than the previous one. Finally, the inner loop terminates after a
maximum amplitude ξmax is reached.

The outer loop consists in repeating this process i tmax times. The i tmax parameter of the
first level loop is crucial for the efficiency of most VNS implementations. However, in our
context, this loop will implicitly be made by the MADS algorithm, and therefore we fix
i tmax = 1.

3 Coupling the MADS and VNS algorithms

The VNS algorithm and the MADS poll step have a complementary behavior: when no
success has been made during an iteration, the next poll step generates trial points closer
to the poll center, while the VNS explores a more distant region with a larger perturbation
amplitude. This paper proposes to incorporate the VNS method in the MADS algorithm, as a
search step (called the VNS search). The poll step remains unchanged so that the convergence
analysis of MADS still holds.

3.1 General description

The MADS mesh provides a natural neighborhood structure to be used by the two VNS
components (descent and perturbation) and only the update of the perturbation amplitude ξk
has to be made outside of the VNS search step.

The entire convergence analysis of MADS is preserved when the two following conditions
are met: first, at iteration k, all the VNS search trial points must lie on the mesh M(k,#k),
and second, their number must be finite. The general way to define the perturbation and the
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To use VNS strategy in NOMAD, the user must define a parameter that sets the upper bound for 
the number of VNS blackbox evaluations. This number, called VNS_SEARCH, is expressed as 
the ratio of VNS blackbox evaluations to the total number of blackbox evaluations. The default 
value is 0.75 (Audet, Le Digabel, Tribes 2009).  
 

4.5	  VNS	  Optimization	  Results	  
 
Table 10 shows a collection of optimization results with VNS strategy enabled. The two lowest 
FPRs obtained are 2.44% and 2.58%, using the following parameter set, respectively. 
 

Table 7 Non-VNS Optimal parameter sets 
𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 

Weighted Median 1784 0.0756 0.0093 49.358 0.9936 
Mean 1836 0.0478 0.0089 0.9578 0.9952 

 
Even though the improvement is a mere 1%, these data sets are much more valuable for practical 
uses (especially the second set). The number of events detected for  
 

𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼 
Median 1528 0.1636 0.033 0.4611 0.9949 0.0340 

 
is 1518, whereas those for the two sets in Table 7 are 2062 and 2298. These two sets convey 
improved accuracy and precision. Furthermore, the second set of Table 7 detected more VPIN 
events than the first and is computationally more efficient. Given the difference in FPR is 
minimal,  
 

𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼 
Mean 1836 0.0478 0.0089 0.9578 0.9952 0.0258 

 
is more suited to be used in practice. Even so, VNS strategy failed to address the divergence of 
FPR when different starting parameters are chosen. We attempted to resolve this issue by 
increasing both the maximum blackbox evaluations and VNS_SEARCH.  
 

Table 8 VNS Optimal parameter sets 
𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼 

Closing 1888 0.1578 0.0480 45.221 0.9942 0.0412 
Closing 1600 0.3586 0.0482 10.371 0.9847 0.0458 

 
These two sets were both found with maximum blackbox evaluations of 5,000 and 
VNS_SEARCH = 0.75. However, no direct correlation of the values of these parameters with 
consistent FPR was observed. Maximum blackbox evaluations was set to 6,000 and 
VNS_SEARCH = 0.85. Yet, NOMAD returned FPR that is inferior to the two above. 
 

𝜋 𝛽 𝜎 𝜂 𝜐 𝜏 𝛼 
Closing 1799 0.6274 0.0662 0 0.9786 0.0578 
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From Table 10, we observe that the majority of FPR falls consistently within the range of 3-5%. 
Even though the optimization procedure consistently produces parameter combinations that give 
us FPR between 3 and 5%, the parameter values are actually different.  Our next task is to 
understand the sensitivity of these parameter choices, that is, how the different parameter choices 
affect our effectiveness measure, FPR. 

5.	  Uncertainty	  Quantification	  (UQ)	  
 
In many cases of mathematical modeling, we do not have complete knowledge of the system or 
its intrinsic variability. These uncertainties arise from different places such as parameter 
uncertainty, model inadequacy, numerical uncertainty, parametric variability, experimental 
uncertainty, and interpolation uncertainty (Kennedy, O’Hagan 2001). Therefore, even if the 
model is deterministic, we cannot rely on a single deterministic simulation (Le Maître, Knio 
2010). We must, therefore, quantify the uncertainties through different methods. Validation of 
the surrogate model and analysis of variance are frequently used to carry out UQ and sensitivity 
analysis.  
 

Validation involves checking whether the surrogate model constructed from the original 
model correctly represents our model. Analysis of variance provides users with important 
information relevant to design and optimization. The user can identify the controllability of the 
system, as measured through sensitivity analysis, and characterize the robustness of the 
prediction (Najm, 2009). There are two ways to approach UQ: forward UQ and inverse UQ. 
UQTK makes use of the former to perform its tasks. 
 

5.1	  UQTK	  
 
A UQ problem involves quantitatively understanding the relationships between uncertain 
parameters and their mathematical model. Two methodologies for UQ are forward UQ and 
inverse UQ. The spectral Polynomial Chaos expansion (PCE) is the main technique used for 
forward UQ. First introduced by Wiener (1938), polynomial chaos (PC) determines evolution of 
uncertainty using a non-sampling based method, when there is probabilistic uncertainty in the 
system parameters. Debusschere, Najm, Pébay, Knio, Ghanem, and Le Maître (2004) notes 
advantages to using a PCE:  
 

1. Efficient uncertainty propagation 
2. Computationally efficient global sensitivity analysis 
3. Construction of an inexpensive surrogate model, a cheaper model that can replace the 

original for time-consuming analysis, such as calibration, optimization or inverse UQ. 
 
We make use of the orthogonality and structure of PC bases to carry out variance-based 
sensitivity analysis. 
 
From a practical perspective, understanding how the system is influenced by uncertainties in 
properties is essential. One way of doing so is through analysis of the variance (ANOVA), a 
collection of statistical models, which analyzes group mean and variance. The stochastic 
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expansion of the solution provides an immediate way to characterize variabilities induced by 
different sources of uncertainties. This is achieved by making use of the orthogonality of the PC 
bases, making the dependency of the uncertain data and model solution obvious.  
 
The Sobol (or the Hoeffding) decomposition of any second-order deterministic functional 𝑓 
allows for expressing the variance of 𝑓 in the following way (Le Maître, Knio 2010) 
 

𝑉 𝑓 =    𝑓 − 𝑓∅ ! =    𝑓!!
!∈ !,…,!   

!!∅

 

 
where 𝑓∅ ≡ 𝑓 . Since 𝑉! 𝑓 ≡ 𝑓!  contributes to the total variance among the set of random 
parameters 𝑥! , 𝑖 ∈ 𝑠 , this decomposition is frequently used to analyze the uncertainty of the 
model. Then for all 𝑠 ∈ 1,… ,𝑁 , we can calculate sensitivity indices as the ratio of the variance 
due to 𝑥!, 𝑉! 𝑓 , to 𝑉(𝑓), such that summing up the indices yields 1 (Le Maître, Knio 2010).  
 

𝒮! = 1!∈ !,…,!
!!∅

,𝒮! =
𝑉! !
𝑉 𝑓    

 
The set 𝒮!  is Sobol sensitivity indices that are based on variance fraction, i.e., they denote 
fraction of output variance that is attributed to the given input. 
 
UQTK first builds quadrature using a user-specified number of sampled points from each 
parameter. For each controllable input, we evaluate it with each point of the quadrature to 
construct PCE for the model. Next, we create the surrogate model and conduct global sensitivity 
analysis using the approach described above. 
 

5.2	  UQ	  Results	  
 
 Based on the formulation of VPIN, it can be readily understood that the objective 
function behaves smoothly with respect to the CDF threshold, 𝜏. The higher the cutoff, the 
smaller the number of events detected. The objective function must behave smoothly with 
respect to its controllable input, so we conducted sensitivity analysis with 𝜏 as the controllable 
input, consisting of 19 equidistant nodes in the corresponding interval of Table 11. The 
quadrature is generated by taking samples of 5 points from each of 𝛽,𝜎, 𝜂,  and 𝜐. The pricing 
strategy used here is closing, and this is for practical reasons: Wu, Bethel, Gu, Leinweber, and 
Rüebel reported in 2013 relative computational costs for 5 largest futures contracts with different 
nominal prices, ranking weighted median, median, weighted average, average, and closing in 
descending order (see Figure 4) Because these 5 futures contracts (S&P 500 E-mini, Euro FX, 
Nasdaq 100, Light Crude NYMEX, and Dow Jones E-mini) constitute approximately 38.8% of 
the total volume, closing price will still be the most efficient strategy for our data set. In addition, 
many high frequency traders opt to use closing price in their daily trading.  
 

From Table 12, 𝛽 and 𝜎 are the two most influential parameters. Sobol index of 𝜐 is 
reasonable as well, given no uniform behavior of 𝜐 was observed from outputs of NOMAD and 
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Wu’s paper. We interpret these numbers in the following way: assuming the inputs are uniformly 
distributed random variables over their respective bounds, then the output will be a random 
uncertain quantity whose variance fraction contributions given below by Sobol indices. We then 
plot the semilog of the indices for each value of CDF threshold (Figure 13). 

 
Table 11 Parameter bounds using 5 sampled points, with 𝜏 as the controllable input 

 Lower bound Upper bound 
𝜋 0 0 
𝛽 20 2000 
𝜎 0.04 2.0 
𝜂 0.003 1.0 
𝜐 0 50 
𝜏 0.98 0.9999 

 
Table 12 Joint Sobol sensitivity indices 

 𝛽 𝜎 𝜂 𝜐 
𝛽 0.14684 0.00521  0.02406 8.2694e-05  
𝜎 0 0.74726  0.02441 0.00022 
𝜂 0 0 0.05407 7.0616e-05  
𝜐 0 0 0 0.00020 

 
Figure 13 Semilog of Sobol indices of the 4 parameters 
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We see from Figure 13 consistent Sobol indices of BPD and its dominance over those of other 
paramaters. The indices of support window and event horizon do behave similarly until 𝜏 ≈ 1, at 
which point we observe sudden fluctuation of the numbers. This is largely due to abnormal 
behavior of the objective function when the CDF threshold is close to 1. If we set the threshold 
too high, only a small fraction of events will be detected, in which case the objective function 
would return high FPR (refer to Figure 3). Hence, the anomaly is not too unreasonable. The plot 
also shows a non-uniform behavior of BVC parameter’s Sobol indices. In addition, its 
contribution to overall sensitivity is minimal. When the degree of freedom (𝜐) for the Student’s-t 
distribution is large enough, the t-distribution behaves very much like the standard normal 
distribution. Figure 13 shows minimal sensitivity from BVC parameter. As such, we let 𝜐 = 0 
for the remainder of our studies for computational simplicity. In order to see the sensitivity due 
to 𝜏 and how the model behaves with different 𝜋, we set 𝜋 to be the controllable input and 
changed the bounds to reflect more practical choices of the parameters. 

 
 Even though 𝜋 is a categorical variable, it is used here as the index at which the 
sensitivities are computed. The controllable input is a way to index multiple sensitivity analysis 
being performed at once, i.e. the controllable input can be the 𝑥 location where we compute the 
sensitivities of the observable of interest, or it could be the index of the categorical value at 
which we want to get the sensitivities, or it could even be the index of multiple observables in 
the same model for which we want sensitivities. As such, using 𝜋 as the controllable input does 
not bar us from carrying out sensitivity analysis. 

 
Table 14 Parameter bounds with 𝜋 as controllable input (5 sampled points) 

 Lower bound Upper bound 
𝜋 All five pricing strategies 
𝛽 200 2000 
𝜎 0.05 1.0 
𝜂 0.01 0.2 
𝜐 0 0 
𝜏 0.98 0.999 

 
Table 15 Sobol sensitivity indices 

 Pricing Strategies 
 Closing Mean Median WMean WMedian 
𝛽 0.01485 0.01653 0.01369 0.014465 0.012892 
𝜎 0.42402 0.42017 0.41921 0.424548 0.415468 
𝜂 0.47059 0.46618 0.47463 0.465356 0.478596 
𝜏 0.05595 0.05951 0.05672 0.058370 0.059124 

 
 We then made the mesh even finer by setting the lower and upper bounds to include the 
majority of output parameters found in Table 10. The ranges are shown in Table 16. We sought 
to find out which parameter is the most influential one in these bounds. From Table 17, we see 
that no other parameters except 𝜂 behave in a volatile way. As these bounds did not provide 
much insight to other variables, we changed the bounds so that they correspond to the parameters 
of the lowest FPRs. Ranges are specified in Table 18. The Sobol indices in Table 19 tell us that 𝛽 
and 𝜏 become insignificant when they are chosen in these intervals. 𝜎 and 𝜂, however, are 
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extremely volatile, and most responsible for the variance of the objective function. We see from 
Table 17 and 19 that pricing options play minimal role in contributing to the overall sensitivity. 
Within the bounds prescribed in Table 16 and 18, it is suggested that the user select closing, 
unweighted mean, or weighted mean for computational efficiency. 

 
Table 16 Parameter bounds with 𝜋 as controllable input (7 sampled points) 

 Lower bound Upper bound 
𝜋 All five pricing strategies 
𝛽 1400 2000 
𝜎 0.04 0.5 
𝜂 0.003 0.01 
𝜐 0 0 
𝜏 0.98 0.999 

 
Table 17 Sobol sensitivity indices 

 Pricing Strategies 
 Closing Mean Median WMean WMedian 
𝛽 0.0083 0.0096 0.0096 0.0120 0.0088 
𝜎 0.0416 0.0468 0.0480 0.0449 0.0471 
𝜂 0.9302 0.9269 0.9255 0.9258 0.9267 
𝜏 0.0154 0.0124 0.0128 0.0131 0.0126 

 
Table 18 Parameter bounds with 𝜋 as controllable input (7 sampled points) 

 Lower bound Upper bound 
𝜋 All five pricing strategies 
𝛽 1600 1888 
𝜎 0.04 0.628 
𝜂 0.008 0.067 
𝜐 0 0 
𝜏 0.97 0.998 

 
Table 19 Sobol sensitivity indices 

 Pricing Strategies 
 Closing Mean Median WMean WMedian 
𝛽 0.00040 0.00011 0.00011 0.00020 0.00050 
𝜎 0.21397 0.22682 0.22386 0.22622 0.21967 
𝜂 0.70543 0.68904 0.69084 0.68912 0.69510 
𝜏 0.05749 0.06118 0.06136 0.06090 0.06101 

 
  The sensitivity analysis tells us that the range of each parameter we specify affects each 
one’s relative importance. Initially, the support window and buckets per day were the dominant 
variables. As we made the mesh finer and changed it to correspond to the best results from 
NOMAD, we see that the event horizon and the support window become the determining 
parameters that control the variance of the objective function. This indicates that when the 
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number of buckets per day is between 1600 and 1888, and the VPIN threshold is between 0.97 
and 0.998, their exact values have little influence on the resulting FPR. 
 
 
 

6.	  Conclusion	  
 

We have analytically explored the parameter space of VPIN by rigorously searching for 
the global minimum FPR and conducting sensitivity analysis on a number of parameter bounds. 
Although we were not successful in finding the global minimizer of FPR, our test results from 
VNS optimization displayed some degree of consistency.  
 

To better understand the parameter choices, we used uncertainty quantification to analyze 
the objective function’s sensitivity with respect to each parameter. Results indicate oscillatory 
behavior of BVC parameter and minimal fluctuations observed in buckets per day, support 
window, and event horizon for 𝜏 not too close to 1. Studying changes in variance under different 
pricing strategies informed us that within the bounds obtained from NOMAD output, they play 
minimal role in determining the FPR.  
 
From our analysis, we suggest using the following ranges of parameters for practical applications 
of VPIN: 

• Using the mean price within a bar as the nominal price for the bar. Computing mean is 
quite efficient. Although there was little to no variation when using other pricing options, 
mean did yield one of the lowest FPRs. 

• Sensitivity analysis shows the contribution from buckets per day is negligible when its 
values are between 1600 and 1800. We suggest using a number that lies in an interval of 
about 1836. 

• Support window is an important parameter. Even a small perturbation can cause a drastic 
difference in FPR. We suggest the user to use a number very close to 0.0478. 

• Event horizon is another important variable to consider. Like support window, it is highly 
volatile. We suggest the user to use 0.0089. 

• CDF threshold is important. However, the analysis shows that as long as we are working 
with 𝜏 > 0.98, its influence becomes minimal (but it should never be too close to 1).  

 
Easley, López de Prado, and O’Hara (2010) stated some potential applications of the VPIN 
metric: 

• Benchmark for execution brokers filling their customers’ orders. The clients can also 
monitor their brokers’ actions and measure how effectively they avoided adverse 
selection. 

• A warning sign for market regulators who can regulate market activity under different 
flow toxicity level.  

• An instrument for volatility arbitrage. 
 
We	  believe	  that	  results	  from	  our	  optimization	  and	  sensitivity	  analysis	  can	  aid	  in	  improving	  
the	  efficiency	  of	  the	  VPIN	  metric.	  
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Table 9 Optimization results with different starting points 

 
 Starting Point  Final   
 𝛽 𝜎 𝜂 𝜐 𝜏  𝛽 𝜎 𝜂 𝜐 𝜏 𝛼 # of Events 

Closing 
200 1 0.25 0 0.99  243 1.0009 0.2484 9.613 0.9902 0.0668 1026 
20 1 0.25 0 0.8  121 1.6966 0.3311 5.2338 0.9917 0.0736 746 

2000 2 1 50 0.9999  1797 0.1314 0.0130 8.6047 0.9928 0.0401 2058 

Mean 200 1 0.25 0 0.99  198 0.9970 0.2520 5.0195 0.9896 0.0759 1126 
20 1 0.25 0 0.99  314 1.0003 0.2500 10.061 0.9899 0.0752 995 

Median 
200 1 0.25 0 0.99  175 1.0205 0.2451 10.954 0.9905 0.0632 1087 
20 1 0.25 0 0.8  219 1.0880 0.2500 24.600 0.9937 0.0773 608 

2000 2 1 50 0.999  1528 0.1636 0.0327 0.4611 0.9949 0.0340 1518 

WMean 200 1 0.25 0 0.99  200 1.0003 0.2501 4.9970 0.9900 0.0787 1073 
20 1 0.25 0 0.8  135 1.2246 0.2939 41.608 0.9858 0.0869 1393 

WMedian 
200 1 0.25 0 0.99  200 0.7063 0.4495 14.9968 0.9900 0.0720 1331 
20 1 0.25 0 0.8  273 1.2496 0.4738 9.9808 0.9908 0.0783 832 

2000 2 1 50 0.999  1998 1.116 0.9977 49.952 0.9934 0.1060 533 
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Table 10 VNS Optimization results with different starting points 

 
 Starting Point  Final   
 𝛽 𝜎 𝜂 𝜐 𝜏  𝛽 𝜎 𝜂 𝜐 𝜏 𝛼  # of Events  

Closing 
1300 1.2 0.25 4 0.99  1799 0.6274 0.0662 0 0.9786 0.0578 1455 
200 1 0.003 0 0.99  1888 0.1578 0.0480 45.221 0.9942 0.0412 1184 

2000 2 1.0 50 0.9999  1600 0.3586 0.0482 10.371 0.9847 0.0458 1724 

Mean 
2000 2 1 50 0.9999  1606 0.0565 0.0118 35.361 0.9944 0.0306 2177 
200 1 0.003 0 0.99  1845 0.0401 0.0093 14.943 0.9972 0.0319 2300 

1300 1.2 0.25 4 0.99  1836 0.0478 0.0089 0.9578 0.9952 0.0258 2298 

Median 1300 1.2 0.25 4 0.99  1745 0.0798 0.0156 7.0073 0.9937 0.0369 2005 
200 1 0.003 0 0.99  624 0.4338 0.0449 47.891 0.9905 0.0457 1369 

WMean 200 1 0.003 0 0.99  1789 0.4539 0.0639 2.4991 0.9905 0.0442 878 

WMedian 1300 1.2 0.25 4 0.99  1784 0.0756 0.0093 49.358 0.9936 0.0244 2062 
200 1 0.003 0 0.99  1631 0.0433 0.0098 33.763 0.9943 0.0329 2651 
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